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PRECEDING PAGE BLANK NOT FILMED. v
ABSTRACT

The theory of operation of electrostatic probes in a slightly ionized,
collision-dominated gas, such as the D-region of the ionosphere, is poorly
understood. This report studies the collection of positive ions by a
highly negative spherical probe in such a plasma for ratios of probe
radius to Debye length of the order of unity.

The theory is reviewed and the governing equations are developed.

Due to the nonlinearity of the equations, a numerical method was neces-
sary to solve the equations exactly. This method is explained in detail.
The results are compared to those of Su and Lam (1963) and to the results
of a zero space-charge theory. It is concluded that space charge may

not be neglected.
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1. RELEVANT PROPERTIES OF THE LOWER IONOSPHERE

1.1 Qualitative Description of the Lower Ionosphere

The ionosphere is a weakly ionized gas which completely envelopes
the earth. It extends from 50 km in altitude to perhaps 1000 km and is
permeated by the earth's magnetic field. The lower ionosphere  as
designated by Whitten and Poppoff (1965), is the altitude region between
50 and 150 km. The principal source of ionizing electromagnetic radia-
tion is the sun but galactic cosmic rays are also important. With in-
creasing altitude the degree of ionization tends to increase, while the
absolute concentration of charged particles exhibits a layered structure
associated with different photoionization and recombination processes.
That such layers are likely to form in the ionosphere can be seen from
elementary considerations and is discussed clearly by Belrose (1965).
This structure provides a convenient, but by no means unique method of
classifying the various altitude regions. According to the physical
processes under study other classification schemes may be chosen, such
as those based on neutral gas temperature profiles, chemical composition,
or ionization dynamics.

Ground-based radio techniques provide a convenient method of studying
the ionization above 85 km in altitude. A well-defined layer of ioniza-
tion is formed during normal daytime conditions in the altitude region
between 90 and 150 km and is known as the E-region., The F-region extends
upward from the top of the E-region. No convention has been adopted re-
garding the upper limit of the F-region. The earliest studies of the
ionosphere revealed directly the existence of the E- and F-regions but

they also gave indirect evidence for an ionized layer below 90 km in



altitude (Appleton and Ratcliffe, 1930). This altitude regime has come
to be called the D-region. Some evidence for the existence of another
even lower layer (the C-region) has been obtained from the study of low
frequency radio wave propagation (Krasnushkin and Kolesnikov, 1962).

1.2 Description of the D- and E-Regions in Terms of Plasma Parameters

A very small fraction of the gas molecules in the D-region are
ionized. Measurements of the concentrations of the charged particles
there are difficult and data is therefore scarce. Profiles of D-region
electron densities may be obtained by ground-based (partial reflection)
experiments; see e.g. (Belrose and Burke, 1964). Figure 1.1 shows the
number densities of positive ions, negative ions, and electrons plotted
versus altitude as obtained by Sagalyn and Smiddy (1964) in a daytime
rocket experiment. These number densities of 103 or 104 (:m_3 may be
compared with the neutral gas number density profile shown in Figure 1.2
which is due to Champion and Minzer (1963).

At night the electrons recombine by attachment to neutral molecules,
forming negative ions. In visible light these negative ions are unstable
(Belrose, 1965). Estimates of the ratio, A, of negative ion concentration
to the electron concentration range from 7.5 at 60 km to 103 at 90 km
in the daytime (Nicolet and Aikin, 1960). Nighttime measurements by
Sagalyn (1965) show that A is greater than unity to altitudes above 90 km,
and this ratio should increase approximately exponentially with decreas-
ing altitude since the electron-neutral collision frequency is propor-
tional to the neutral gas number density.

The electron temperature in the D-region is virtually identical to

the neutral gas temperature (Salah and Bowhill, 1966) and the same is

generally regarded as true for the positive and negative ions since they
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Figure 1.1 Number densities of positive ions, negative ions, and
electrons versus altitude (after Sagalyn and Smiddy, 1964).
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are in even better thermal contact with the neutrals than the electrons.
The temperature profile shown in Figure 1.2 and the positive ion densities
shown in Figure 1.1 lead to a Debye length for positive ions which varies
roughly between 0.4 cm and 4.0 cm in the D-region. The Debye length,

A, of a charged particle species is given approximately by

D

_ 1/2
Ay = 6.91 (T/N) (1.1)

where T is the temperature of the species in degrees Kelvin, and N0 is
the number density of the same species in cm_s.

Since such a small fraction of the gas molecules in the D-region is
ionized, collisions of charged particles with neutral molecules are much
more frequent than collisions with other charged particles. In illust-

ration, the mean free path for electron-ion collisions, Ze i lies

between 105 cm and 107 cm, computed from the relation from Boyd (1966):

5 .2
1.6 x 10 Te

g . = (1.2)
e-1 n, (0.8 + 1n (Tz/ne)]

. + . .
The ion-neutral mean free path, %, assuming N, ions in N, gas,

2 2
cross-section data from McDaniel (1964), and the neutral gas density
profile of Figure 1.2, is subject to:

10—2 cm < & < 1.0 cm

in the D-region. The neutral-neutral mean free path, 0 given approxi-

mately by

14
gnn =4 x 10 /nn cm (1.3)



where n. is the neutral gas number density in cm_3 ranges between
4 x 1072 cn and 4.0 cm, from the data of Figure 1.2.

Measurements of charged-particle parameters in the E-reglon are
much easier than in the D-region. Electron density versus altitude
profiles can be obtained with a good accuracy by a variety of techniques.
An electron density profile determined from an ionosonde record by
Bowhill and Schmerling (1961) is shown in Figure 1.3. Other experimental
investigations (Sagalyn and Smiddy, 1964) have shown that, at least in
the daytime, there are no negative ions at altitudes as high as the E-
region. Thus, charge neutrality requires the positive ion density to
be the same as the electron density. This condition is apparent in
Figure 1.1.

The E-region electron temperature generally exceeds the neutral gas
temperature. Spencer et al. (1965) and Smith et al. (1965) have reported
E-region electron temperature measurements by rocket-borne Langmuir
probes. Their results show that the difference between the electron
temperature and the neutral gas temperature can be as much as twice the
neutral gas temperature, according to the phase of the sunspot cycle,
season, time of day, and other factors.

E-region values of the electron-ion mean free path, given by
Equation(1.2), range between 4 x 104 cm and 5 x 105cm The neutral-neutral
mean free path from Equation (] .3) varies between 40 cm and 8 x 103 cm,
while the positive ion Debye length is approximately 0.3 cm throughout
the E-region.

The values of charged-particle parameters just cited are the per-
tinent lengths for a theory of electrostatic probes in the lower iono-

sphere which neglects the earth's magnetic field. Table 1.1, taken
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Figure 1.3 An electron density profile determined from an ionosonde
record (after Bowhill and Schmerling, 1961).




from a chart of Boyd (1965), compares the ion-neutral mean free path
and the ionic Debye length with the linear dimension, rp, of a prac-
tical present-day rocket-borne probe for the various altitudes of the

lower ionosphere.

Height Range Conditions
L > XD > rp
above 85 kilometers L o> rp > KD
rp > L > AD
AD > L > rp
below 85 kilometers rp > XD > R
XD > rp > 2

Table 1.1 Relations between mean free path, Debye
length, and a practical probe radius in
the lower ionosphere.

The physical theories applicable to the various conditions listed

in Table 1.1 will be discussed in Chapter 2.




2. THE USE OF ELECTROSTATIC PROBES IN THE LOWER IONOSPHERE

2.1 Introduction

One of the fundamental techniques for measuring the properties of
plasmas is the use of electrostatic probes. This method of investigation
was highly developed by Langmuir and his colleagues as early as 1924.
Basically, an electrostatic probe is a small metallic electrode inserted
into a plasma. The probe is attached to a DC power supply capable of
biasing it at various voltages positive or negative with respect to the
plasma, and the current collected by the probe then provides information
about the conditions in the plasma, such as the concentrations and
energy distributions of the charged particles. Under a wide range of
conditions, the disturbance caused by the presence of the probe is
localized and the quantity being measured is perturbed only to a very
small degree. In some situations, however, such as in the presence of
a strong magnetic field, the disturbance is not localized and the current
drawn by the probe usually carries considerably less information. Also,
since a probe appears as a boundary to a plasma the theory of probes is
very complicated; near the boundary the equations governing the motion
of the plasma change in character.

In spite of the many difficulties, both experimental and theoretical,
arising from the use of probes in plasmas, the method is of fundamental
importance since it has one distinct advantage over all other diagnostic
techniques: it can make local measurements. Almost all other techniques,
such as spectroscopy and radio wave propagation, give information aver-
aged over a large volume of plasma. Lven in the cases where the probe

current cannot be clearly interpreted in terms of the exact values of



the plasma parameters near the probe, one can still deduce relative
values and their fluctuations.

2.2 Types of DC Probes Used in the Lower Ionosphere

2.2.1 Langmuir Probes

Before examining the theory of Langmuir probes, it should be noted
that implicit in any probe theory is the notion of a sheath. In the
region adjacent to a probe (or any boundary) in a plasma, charge neu-
trality need not be and usually is not satisfied as it is in the undis-
turbed plasma away from the probe. Electric fields may therefore exist
in this layer and a potential difference appears between the probe
surface and the ambient plasma. This layer over which a potential
difference exists is the sheath. Ascribing a definite thickness to the
sheath is an approximation which has led to useful theoretical results
and which serves as a criterion for the applicability of the classical
Langmuir probe theory. This criterion will be discussed later. While
the thickness of the sheath surrounding a probe varies with probe
potential (Bettinger and Walker, 1964) it is convenient to express the
scale of thickness in terms of the plasma parameters by the Debye
shielding length, AD’ given by Equation (1.1).

First we will examine the current-voltage characteristic of a
Langmuir probe. In Figure 2.1 the negative, or electron current to a
Langmuir probe in a plasma consisting of positive ions, electrons and

neutrals is plotted versus the probe potential with respect to an

arbitrary reference point. Such a plot may be obtained in various ways:

continuously in a steady-state plasma, or point by point in a pulsed

discharge, the probe bias being changed from pulse to pulse. At the

10
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line Vp = VS the probe is at the plasma, or space, potential and there
are no electric fields present The current collected by the probe is
entirely due to the thermal motions of the particles, and since the
electrons have greater thermal velocities than the ions the current is
predominantly due to electrons,

If the probe potential is made negative relative to VS the electrons
are repelled and the ions are accelerated. The electron current de-
creases as V_ decreases 1in Region B, which is called the retarding
potential region. Obviously the electron current in Region B is a
measure of the energy distribution of the electrons since only those
with thermal energy at least as great as the repulsive potential of the
probe may strike the probe. For a Maxwellian velocity distribution the
electron current density in the retarding potential region is

]

e = 3. exp [e(Vp - V/KT ] (2.1)

where jr is the random current density given by kinetic theory as

ip = ng v/4, (2.2)

where n, is the electron number density and the average electron speed

v 1s
7= (skT_/m )% (2.3)
[ e

In the above k is Boltzmann's constant, Te is the electron




temperature, and m is the electron mass. Equations (2.1), (2.2) and (2.3)
form the basis of the classical Langmuir probe theory.

Thus, if the ionic current in the retarding potential region is
subtracted, the slope of a semi-logarithmic plot of current versus
voltage is simply related to the temperature.

At the point Vp = Vf, the probe is sufficiently negative to repel
all of the electrons except a flux equal to that of the positive ions,
and no net current is collected. An insulated electrode inserted into
the plasma would assume Vf (the floating potential) as its equilibrium
potential.

If the probe voltage is made positive relative to the plasma, elec-
trons are accelerated to the probe and ions are repelled. Near the probe
surface an excess of negative charge (the electron sheath) builds up in
a layer until the total negative charge there equals the equivalent
positive charge on the probe. Outside the sheath there is very little
electric field and the electron current which enters the sheath is that
due to thermal motion. Since the area of the sheath is relatively con-
stant with increasing probe voltage (Chen, 1965), we have the fairly
flat portion in Figure 2.1, labeled by A. This is the region of satu-
ration electron current. The magnitude of the saturation current is a

1/2 £or a Maxwellian distribution by Equations (2.2)

measure of n (kT )
e e
and (2.3).
At large negative values of Vp’ almost all the electrons are re-
pelled and we have an ion sheath and the saturation ion current seen in

Region C of Figure 2.1, Aside from the disparity in magnitudes due to

the difference in thermal velocities the ion saturation current is

13



similar to the electron saturation current (in the case of no magnetic
field) except for one major difference discussed by Chen (1965) in his
comprehensive review of electric probe theory. When the ion temperature
is not the same as the electron temperature the ion saturation current
is not a straight- forward measure of ni(kTi)l/z, where n. is the ion
number density and Ti the ion temperature.

For accelerating potentials theoretical current-voltage character-
istics have been calculated in detail by Mott-Smith and Langmuir (1926).
In this case the characteristic is highly sensitive to the size and
shape of the electrode. Exact expressions are possible only when the
characteristic dimension of the probe is either very large or very small

compared to the Debye length. For a small sphere the electron current

density in an accelerating potential is

je = jr[l + eVp/kTe] (2.4)
where jr is given by Equation (2.2) and Vp is the probe voltage. It is
seen that the electron density and temperature are easily obtained.

One of the numerous but well-defined restrictions on the applica-
bility of Langmuir probe theory is that the mean free path for charged
particle-neutral collisions be greater than the sheath thickness, so
that on the average the collected particles suffer no collisions after
entering the sheath. If once again we take the Debye length as in-
dicative of sheath thickness we see from Table 1.1 that the E-region of
the ionosphere easily satisfies this criterion. The altitude at which

XD = % is about 90 km. Above this altitude the motions are essentially

14




collisionless for the purposes of probe theory, and therefore Langmuir
probe theory applies. The case 2 > AD > rp corresponds to a thick
sheath and ¢ > rp > AD represents a thin sheath. With a thin sheath the
current is space-charge limited; for a thick sheath the current is
orbital-motion limited (Mott-Smith and Langmuir, 1926).

Smith (1965) enumerates the capabilities and the practical problems
of Langmuir probe measurements in the ionosphere and outlines the design

of a tested probe system.

2.2.2 Gerdien Condensers

Gerdien condenser-type instruments (Chalmers, 1957) have as their
basis a theory which treats the motions of the charged particles as
mobility-controlled, which assumes a mean free path much shorter than
the distance over which the electric field changes appreciably. A
cylindrical geometry is generally used and a DC voltage is applied
between an outer electrode and an inner, coaxial electrode. For iono-
spheric applications the instrument is flown through the gas by a rocket.
If the electric fields due to the space charge are neglected the current
collected can be simply related to the ion number density if: (1) the
gas flow rate and aspect are known, or (2) the ionic mobility is known,
according to the mode of operation. When the radial motion of the
charged particles in the condenser is assumed to be collision-dominated
and the effect of the space charge is neglected, the theoretical current-
voltage characteristic may be derived. Figure 2.2 shows such a charac-
teristic when the ionized gas consists of one positively charged species,
one negatively charged species, and a neutral gas mixture. V is the

voltage of the cylinder wall with the inner electrode as a reference.

15
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The two flat regions in Figure 2.2 are those of saturation currents.
Obviously the maximum current collected is just proportional to the rate
of input of ionized gas, or the flow velocity Vo' The saturation

currents for singly charged ions are given by

(Is)f = NteVOAcos S] (2.5)
where N_ and N are the respective charged particle number densities,
A is the right cross-sectional area of the cylinder and © is the (small)
angle between the cylinder axis and the flow velocity. Subsonic flow
is assumed, but in any case the flow rate and the aspect angle must be
known to determine the number density.
In the two linear regions of the characteristic the positive and

negative currents are given by

I, = N+eCu+V/eO (2.6)
where C is the capacitance of the condenser, €, is the permittivity of
free space, and u,_ are the respective mobilities. Equation (2.6) assumes
that the radial d;ift velocities are proportional to the radial electric
field. To determine the number density of either species its mobility
must be known.

The assumption that the motion of the charged particles be collision-
dominated requires that the cylinder radius be much greater than the
mean free path. From Table 1.1 it can be seen that this condition holds

for the lowest two altitude regions indicated. Bourdeau, Whipple, and

17
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Clark (1959) have described the results of Gerdien condenser measure-
ments in the altitude range from 35 to 80 km and they discuss many of
the practical difficulties encountered, such as those due to complicated
air flow patterns and the lack of knowledge of the mobilities of atmo-
spheric ions.

2.3 Motivation for the Present Research

Direct measurement of positive ion concentrations at D-region
altitudes is required for a complete understanding of the formation and
dynamics of the lower ionosphere. An electrostatic probe carried by a
small rocket is a desirable way to make such measurements but the theory
of operation of such a probe is as yet incomplete. Any complete theory
of positive ion collection in the D-region must take into account the
collision-dominated motion of all the particles, the presence of nega-
tive ions and electrons, and many instrumental effects. In addition
such a probe will probably be in motion through the plasma.

As noted earlier, Langmuir probe theory is not applicable to the
D-region because of the short mean free path. Gerdien condenser experi-
ments require knowledge of the air flow through the instrument or of the
ionic mobilities to obtain a clear interpretation of the current-voltage
characteristic in terms of ionic number densities, all within the frame-
work of a theory which neglects space charge and molecular diffusion
(see Section 3.3). Even for number densities as low as 103 cm_3 the
neglect of space charge is probably not justified (Balmain, 1966).
Clearly, a more general probe theory is required for D-region applications.

The purpose of the present research is to study the theory of

operation of a spherical electrostatic probe immersed in a relatively
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high pressure, weakly ionized gas consisting of one type of positive
ions, one negatively charged species, and a neutral background gas. The
probe is assumed stationary with respect to the plasma. While a com-
plete theory of D-region probes must allow for the possible presence

of two or more negatively charged species and a motion of the probe re-
lative to the plasma it is felt that a good understanding of the simpli-

fied situation is necessary before undertaking the entire problem.
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3. FORMULATION OF THE EQUATIONS GOVERNING
A COLLISION-DOMINATED DC PROBE

3.1 Review of the Theory of Boyd

Boyd (1951) explored the possibility of determining the positive
ion density from the positive current to a negatively biased spherical
probe whose radius is much greater than the mean free path of the plasma
in which it is immersed. He noted that the current to the probe is
determined by the potential distribution around the probe and divided
the space surrounding the probe into four regions (listed here in order
of increasing distance from the probe):

(i) the space-charge sheath, in which the positive ion
density, n_>>n_, where n_ is the negative particle
number density. This is a region of strong electric
field.

(1i) the "abnormal extra-sheath region', in which n_==n_ but

the electric field is strong
(iii) the "normal extra-sheath region', where n+F:?n_ and the
electric field is weak

(iv) the undisturbed region.

Outside the abnormal extra-sheath region Boyd used the ordinary mobility
relation in which the average particle velocity is proportional to the
electric field. Closer to the probe, in the abnormal extra-sheath and
the sheath, he employed Sena's high-field mobility (Sena, 1946) in which
the average velocity is proportional to the square root of the electric
field. While the use of two mobility models is physically well-motivated,
Cohen (1963) pointed out the mathematical impossibility of properly

matching the solutions for the 'mormal' region and the '"abnormal' region.
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By neglecting the ion diffusion term in the flux equation Boyd was
able to find the potential profile from solutions to Poisson's equation
coupled with the appropriate mobility relation, for the case where the
sheath thickness is less than a mean free path. In the opposite limit
(2 << AD) he concluded that the problem was solvable only if the sheath
thickness were predetermined by experiment, which is a very severe re-
striction, both practically and theoretically. The reason for the con-
clusion was the highly non-linear character of the differential equation
for the potential distribution (this equation will be seen later in a
more complete form than in Boyd's analysis); and approximate numerical
solutions were practically impossible before the advent of the modern
digital computer.

3.2 The Theory of Su and Lam

Su and Lam (1963) have developed a continuum theory of spherical
electrostatic probes in a dense, slightly ionized gas. They discuss
negatively biased probes in a proper mathematical fashion, beginning
with Poisson's equation and two flux relations deduced from linear
irreversible thermodynamics. Four distinct regions of the disturbance
around the probe emerged as a result of their analysis:

(1) the quasi-neutral region
(ii) the transitional region
(iii) the ion sheath
(iv) the ion-diffusion layer.
The ion-diffusion region is a thin layer (thickness ~ 2) immediately
adjacent to the probe surface in which the ion diffusion term in the

flux equations dominates the mobility term. The outer edge of this
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layer joins the ion sheath, in which there are practically no negatively

charged particles and n_>>n

Just outside the sheath, in the tran-

sitional region, the negative particles become important although still

less numerous

ton >n in
+ - -

Boyd's normal
Explicit

by Su and Lam

than positive ions. The inequality varies from n_ >> n

this region until, finally in the quasi-neutral, n+;:5n_.
extra-sheath corresponds to the quasi-neutral region.

forms for the current-voltage characteristics were found

for very negative probes and for probes near plasma poten-

tial. In both cases the probe radius was assumed to be much greater than

the Debye length. Numerical solutions to the equations were constructed
for a wider range of probe sizes under another approximation to be dis-

cussed in detail in Chapter 4.

3.3 Su and Lam's Equations

The equations developed by Su and Lam (1963) include the effects
of space charge in the potential distribution around the probe. They
also allow for currents due to free diffusion in the flux relations, and
they treat the particle motions as collision-dominated. Thus the physics
of the simplified situation described at the end of Section 2.3 in which
a spherical DC probe, stationary relative to the plasma, draws a positive
ion current should be governed by Su and Lam's equations. Therefore
the development of the governing equations in this report follows that of
Su and Lam (1963).

From linear irreversible thermodynamics the expressions for the

current densities of positive ions and electrons (or negative ions) in

a slightly ionized, dense gas are, respectively,
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where N+, N, Moo Mo, D+, D , are the number densities, mobilities, and

diffusion constants for the positive and negative species, and V is the

electrostatic potential. These expressions can also be derived directly

from a kinetic theory point of view in the continuum limit (see
Wasserstrom et al. 1965). The first term on the right-hand sides of
(3.1) and (3.2) is the current density due to molecular diffusion, and

the second term is the electrically-driven (ohmic) current density. In

the steady state and with no production or loss of charged particles the

two equations of charge conservation become

.J =0 (3.3)

<4

<
S
]
o

(3.4)

The electrostatic potential V(r) must obey Poisson's equation

(written here in rationalized MKS units):
2
v° V(r) = —e(N+ - N_)/e0 . (3.5)
In Equations (3.1), (3.2), and (3.5), singly-charged ions are assumed,

and a spherical coordinate system with an origin concentric with the

probe are to be used, with r the radial coordinate.
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The boundary conditions imposed on this set of equations are that
infinitely far from the probe the positive and negative number densities
are equal to the quiescent plasma density, No’ and are zero at the probe
surface, r = rp, assuming an absorbing probe surface, and that the po-
tential of the quiescent plasma is taken to be zero and that of the probe

to be Vp' That is,

N, (=) = N_(=) = N (3.6)
N (1) = N _(x) =0 (3.7)
V(=) = 0 (3.8)
V(r) = v, (3.9)

Equations (3.3) and (3.4) may be integrated once. With I+, the
total positive ion current, and I , the total negative ion current, as

the respective constants of integration we have:

dN Ne ]
2 + + dav _
dtre D+ I\d—r— + kT+ -d‘I—_‘ = I+ (310)
dN Ne . ]
2 - - dv B
dnre D_ [a—;— - —kT-— a-x—‘ = I_ s (3,11)
where the Einstein relations, D+ = u+kT*/e and D = u_kT_/e have been

employed.

To isolate important physical parameters we introduce dimensionless
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variables as follows:

n, = N+/No s n_ = N_/N0

¢ = -eV/kT_

The negative sign in the definition of ¢ was chosen to make ¢ positive

for negatively biased probes. Equations (3.5), (3.10), and (3.11) be-

come
d2¢ 2 do 2, 2
— + e rpNoe (n+ - n_)/eokT_ (3.12)
ds
dn n
+ d¢  _ 2
T T4 - I+/4ﬂrpNOeD+s (3.13)
dn
- d¢ _ 2
-d—s—+n s - I_/4TTI‘pNOeD_S (3.14)
where € = T+/T_

If we now recognize the square of the Debye length, A in Equation (3.12)

D)

2 2
AD = eokT_/Noe

and the random positive ion current, I (that which would flow if the

R’



probe were at the plasma potential)

IR = 4ﬂNOeD+rp

we can make a transformation to simplify Equation (3-12). First, we

define the ratio of positive ion current to IR’
o = I+/IR ) (3.15)
Then we introduce the inversion transformation

X = ea/s . (3.16)

Equations (3.12), (3.13), and (3.14) become

2
. d—% = (eor ) (n - n )/l (3.17)
p +« 70
dx
dn
+ de _ _
S p - N9 T 1 (3.18)
dn
- dcp ~ .
T T - ERTIe VI S (3.19)

Due to this transformation the coordinate of the probe surface is x = ea,
while points infinitely far from the probe correspond to x = 0. The
boundary conditions (3.6), (3.7), (3.8), and (3.9) become, in the dimen-

sionless variables and the inverted coordinate system:




n_(0) =n_(0) = ;
n_(ea) =n _(ea) = 0
¢(0) =0

¢(ea) = ¢p = —eVp/kT_

This system of equations is highly nonlinear.

is discussed in Chapter 4.

(3.20)

(3.21)

(3.22)

(3.23)

The method of solution
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4. METHOD SOLUTION FOR HIGILY NEGATIVE PROBES

4.1 Approximate Analytic Techniques

For highly negative probes (¢p >> 1) 1t should be expected that the
current of negatively charged particles vanishes. Equation (53.19) be-

comes

dn
- d¢  _
d + n_ —(E(- =0 5 (4,1)
with the simple solution, using (3.20),
n_=exp (-4) . (4.2)

Equation (4.2) is the Boltzmann distribution for negative ions in a re-
pulsive potential. It should be valid whenever the negative ion current
to the probe 1s much less than its random value. Su and Lam (1963) dis-
cussed this point in detail. They showed (4.2) to be nearly exact for
highly negative probes.

As mentioned previously, Su and Lam (1963) found approximate ana-
lytic solutions to (3.17), (3.18), and (4.2) for probe potentials approach-
ing negative infinity, in the case where rp/xD approaches infinity.

Cohen (1963), in an asymptotic analysis, also found approximate solutions
for the case rp/kD approaching infinity, but with a finite probe voltage.

4.2 Su and Lam's Approximation and Numerical Integration

For probes of more moderate size compared to the Debye length, Su

and Lam (1963) invoked numerical methods. Before performing a numerical




integration they combined (4.2), (3.17), and (3.18) to obtain

Ad% | eeaden'c

2 do
dx E)_(.

- (1 +e€)exp (-0) | , (4.3)

where the primes indicate differentiation with respect to the variable

x, and C is given by
_ 2,.2
C = (erpa) /AD . (4.4)

The third-order term, e(x4¢”)', in (4.3) is of some interest. Su and
Lam (1963) pointed out that:

(1) it is responsible for the existence of the ion-diffusion
layer, and must be included to fulfill the boundary
condition on the positive ion density at the probe
surface, Equation (3.21), and

(i1) it causes an instability in the numerical integration.
In their numerical solution of (4.3) Su and Lam (1963) dropped the
third-order term. They justified this simplification by the following:
(i) their analysis of probes for which
0 >+ In[C/(1 + )] >> 1 (4.5)
indicated that the decrease in ¢(x) due to neglect
of the third-order term is of the order of e, and
is, therefore, negligible for ¢p >> 1
(ii) in many plasmas, € << 1
(iii) if the term is retained the numerical integration

cannot be performed even by modern digital computers.
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Also, because of the boundary layer behavior of the positive ion density
in the ion-diffusion layer, Su and Lam (1963) claimed that the solutions,
¢(x), of (4.3) are insensitive to the boundary condition, (3.21), on the
positive ion density at the probe surface. For these reasons they dropped
the third-order term. Numerical integrations of (4.3) could then be per-
formed with C as a free parameter, thus providing potential profiles

from which the current-voltage characteristic of the probe could be con-
structed. The results of this approximation and the subsequent numerical
integrations will be presented in Chapter 5 and will be compared to the
results obtained by numerical integrations of (3.17), (3.18), and (4.2)
in their exact form.

4.3 The Present Work: A Numerical Integration of the Exact kquations

4.3.1 Numerical Solution with no Approximations

In the present work the third-order term is retained for several
reasons. First, € = 1 is the case of interest, since in the D-region
T =T, whether electrons or negative ions are the negative species
(Salah and Bowhill, 1966). Also, some approximate numerical solutions
by the author indicated that inequality (4.5) would not be satisfied Dy
the parameter C for many normalized currents, o, of interest because
rp/kD is of the order of unity in the present problem. Finally, the
availability of a very fast digital computer (Illiac II of the Department
of Computer Science at the University of Illinois), capable of thirteen-
place accuracy, made possible some numerical solutions of (3.17), (3.18),
and (4.2), with no approximations.

The general technique employed in the present research was to per-

form numerical integrations of (3.17) and (3.18), using (4.2), in the




direction of increasing x (toward the probe surface). A Runge-Kutta-Gill
routine (Gill, 1951) was used. If the point x = 0 could have been
chosen as the starting point for the integration, the quasi-neutral
solution (which obtains on setting n_=n_, and using ¢(0) = 0) could
certainly have provided initial values for n_,n_, ¢, and the derivative
of ¢, thus determining the necessary starting values for the integration.
However, due to the behavior of the second derivative of ¢ at x = 0, a
small but non-zero value of x had to be chosen as the starting point.

A correction term to the quasi-neutral solution was necessary, and com-
patible starting values for x, n_,n_, ¢, and ¢' were required. The
Poincare-Lighthill-Kuo technique (Tsien, 1956) was used to find these
values (see Appendix A), Then for ¢ = 1, values were chosen for a and
rp/xD, and a numerical integration was attempted. The integration was

to continue to xp, the coordinate of the probe surface, with the probe
potential and the potential profile as the major result. Profiles of
n+(x) and n_(x) were also to be found.

As expected, this numerical procedure was unstable; it exhibited
great sensitivity to the starting value, ¢é, of the derivative of the
potential. The normalized positive ion density, n _(x), increased rapidly
with x if ¢é was too high; if ¢é was too low, n+(x), took on negative
values. Tests for these instabilities were incorporated into the computer
program (see Appendix B). Thus the problem was to determine the correct
value (essentially an eigenvalue) of ¢é accurately enough for the inte-
gration to proceed to xp in a stable manner. An iterative process in

the computer program (see Appendix B) was used to find this eigenvalue.

The integration was terminated at the probe surface and the value of
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n+(xp) was examined. If n+(xp) was greater than zero the numerical in-
tegration was repeated with a slightly lower value of ¢é in an attempt

to match n+(xp) to zero. The value of ¢é was repeatedly adjusted in

this manner by an iterative routine in the computer program until either
n+(xp) was matched to zero, or ¢é was determined to the limits of machine
accuracy (thirteen decimal places). It was difficult to obtain numerical
solutions in this way for many values of interest of the parameter C, the
larger C, the more difficult. For C > 50, the starting value for ¢é

had to be determined more precisely than to thirteen decimal places, the
precision limit of the computer, and numerical solutions were impossible.
For C < 50, solutions were possible but the probe potentials of these
solutions were not large enough to allow the construction of the current-
voltage characteristic of the probe for practical voltages (¢p > 150,

or Vp < - 0.75 volts for T = 210°K).

This approach evidently could not generate the current-voltage charac-
teristic of the probe over a wide range of operating conditions, but it
illustrated the behavior of the exact solutions and thus inspired the
development of a more effective technique (see Section 4.3.2). The con-
centrations of positive and negative ions around the probe, obtained en-
tirely by the numerical integration, are shown in Figure 4.1 for
rp/AD = 0.64 and a = 8.50.

In the numerical computations the independent variable was scaled

according to
x=x/(1+¢€) . (4.6)

This scaling was introduced to reduce the computer time required for
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Figure 4.1 Positive and negative ion densities obtained by a
numerical integration.
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the numerical integration and to facilitate direct comparison with the
results of Su and Lam (1963), since they used the same scaling in their
numerical solutions of the simplified form of (4.3). Here, € =1 1is
adopted; Figure 4.1 is therefore a plot of n_ and n_ versus x. The four
regions described by Su and Lam (1963) are seen clearly. Between the
probe surface, ip = 4.25, and x = 3.5 the ion-diffusion layer appears.
The thickness of this layer, by (3.16), is approximately 0.2 rp. The
ion sheath, 1.5 < X < 3.5, is striking in that the ion density there is
nearly constant. This feature will be discussed in more detail. At the
outer edge of the sheath we see the transitional region and then the
quasi-neutral region (x < 0.5). The starting point for the integration,
x = 0,25, corresponds to r = 17 rp. The probe potential corresponding
to the ion distributions in Figure 4.1 is ¢p = 21.16., Successive iter-
ations, which ultimately satisfied the homogeneous boundary condition,
(3.21), revealed that the solutions to the equations are quite insen-
sitive to this boundary condition, as predicted by Su and Lam (1963).
The flat portion of the n+(ip) profile in Figure 4.1 which will be
called the "uniform sheath region', was a common feature of all the
solutions obtained when the equations were solved with no approximations.
The existence of this region served as the basis for a more powerful
method of solution of (3.17) and (3.18), in which the numerical inte-
gration could be terminated before reaching the probe surface, and
matched to an approximate analytical solution. The next section explains

this method.
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4.3.2 Matching an Approximate Analytic Solution to an Incomplete

Numerical Solution

A simple but extremely accurate approximation led to a more feasible
numerical technique. Re-writing (3.17) and (3.18) in the x-coordinate

system, and substituting for n_ from (4.2) we have, again for ¢ = 1,

2
x* 9?% = C[n, - exp (-9)]1/4 , (4.7)
dx
and
dn
+ _ dq)
d)_( = n+$_(- -2 . (48)

The simplification arose from noticing that the second derivative, ¢",
of the potential, rapidly approaches zero as x increases. Thus the
potential gradient, ¢', approaches an asymptote which is just the value
of ¢' at the probe surface. Let K be the asymptote; then for values of

x larger than io (the point at which ¢'" becomes arbitrarily small),

=Kn -2, (4.9)
The solution to (4.9) is, for x > io ,
+

n = 2(1—exp[‘K(ip—i)])/K , (4.10)

which describes the behavior of n+(i) in Figure 4.1 for x > 2.0. We

may not neglect the exponential term compared to unity in (4.10) when



exp[-K(X -D)] > 1072 (4.11)

Inequality (4.11) may be considered the defining relation for the extent
of the thin ion-diffusion layer. In the numerical integration which
produced Figure 4.1 the asymptotic value for ¢' was K=5.80, and

exp[-K(ip—i)]atlo_z

at X = 3.50. When exp[-K(X -X)] < 107%, n, =2/K,
which is seen to be a good approximation to the nearly uniform ion density
in the sheath.

Now for highly negative probes n_ may be neglected compared to n_
in the sheath. This is seen in Figure 4.1 for the case ¢p = 21.16,
which is not a particularly large probe potential. This neglect was
also justified analytically by Su and Lam (1963). Therefore, (4.10)

may be substituted into (4.7) to obtain an expression for ¢'" in the

sheath:
x —L =C/2K . (4.12)

The differential equation (4.12) for the potential applies between io
and the outside edge of the diffusion layer, where (4.11) holds and the

equation becomes

x —= = C(1 - exp[-K(ip-i)])/ZK . (4.13)

The best justification for these simplifications is the results of the
integrations described in Section 4.3.1 in which it was attempted to

carry the numerical integration all the way to the probe surface. For
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the prescribed range of values of rp/kD
0.1 <r /iy <1.0 (4.14)

highly negative probes always yielded solutions for which the regions of
disturbance around the probe were exactly as found by Su and Lam (1963).
In particular, a sheath of nearly uniform ion density always appeared;
the transitional region was never adjacent to the ion-diffusion layer.
In addition, the potential gradient always approached its asymptotic
value (to better than one part in 103) before the integration reached
the probe surface.

Consequently the procedure used to gencrate the current-voltage
characteristics of the probe from (4.7) and (4.8) was to choose values
for the parameter C and numerically integrate (4.7) and (4.8) up to io’
the point where the second derivative of the potential became arbitrarily
small (¢ = 10-2 was chosen). Then (4.12) produced analytic solutions
valid up to the diffusion layer, which were matched to the numerical
solutions at io’ the point of termination of the latter. In this region
the potential obeys

X
§(F) = 0(R ) + K(X - X ) + 10‘2Jf x) ek . (4.15)
*o
(4.15) is nearly exact. The integral term represents the correction due
to the non-zero value of ¢" at io (¢”(io) = 10_2). In all cases of in-
ferest, its magnitude was less than 3 x 10_3 times the magnitude of the

first two terms on the right side of (4.15).



A range of values of ip = a/2 for each C were found by (4.14) and
the criterion (4.11) applied to find the edge of the diffusion layer, in
which (4.13) must be used in place of (4.12). It was found that the
resulting expression for ¢(x) in the diffusion layer produced a negligible
change in the probe potential, ¢p, from that resulting from the appli-
cation of (4.15) all the way to the probe surface, for all values of K
from the numerical integrations and for all ip from (4.14). This verifies
the conclusion found earlier by exact numerical integration, that the
boundary condition (3.21) on the positive ion density at the probe sur-
face does not appreciably affect the solution.

The method of solution just outlined takes advantage of the asymp-
totic behavior of ¢' and thus permits a numerical solution of (4.7) and
(4.8); it avoids the instability which would beset a numerical integra-
tion carried into the ion-diffusion region. The results of this inte-

gration is given in Chapter 5.
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5. RESULTS AND DISCUSSION

5.1 Some Results of the Present Work and Comparisons to Those of Su and Lam

The probe equations, (4.7) and (4.8), were solved by the method de-
scribed in Section 4.3.2. The solutions were tested for sensitivity to
variations in the step size and the initial values by repeating the nu-
merical integration with different starting values and step size. If the
solution obtained with the original parameters agreed with that obtained
using the new parameters to at least three significant figures the solution
was accepted. The step size ultimately chosen was 0.01, and in most cases,
the solutions agreed to at least four places when tested for sensitivity.
These solutions are presented here and compared to those obtained numer-
ically by Su and Lam (1963) for probes of moderate size (see Sections 4.1
and 4.2). Su and Lam performed numerical integrations of Equation (4.3)
after dropping the third-order term and using the scaling of (4.6). For

€ = 1 the equation they solved was
- d
t L - (/- exp(-01/2 (5.1)

As noted in Section 4.3.2 the potential gradient very closely ap-
proaches its asymptote well before the integration reaches the x-coordi-
nate of the probe surface. Figure 5.1 shows this asymptote, K, as a
function of the parameter, C. The upper trace was obtained by integrating
(4.7) and (4.8). The lower trace was found by the present author's nu-
merical integrations of (5.1) and agrees with that obtained by Su and Lam.

1/2 1/2

For C 2 7.0 both curves display the linear dependence of K on C as

predicted theoretically by Su and Lam, but their neglect of the third-order
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term evidently yields values of K lower than the true curve. Therefore,
to collect a given current (a given ip), a probe voltage higher than that
predicted by Su and Lam is required, by an amount depending on the current
and the ratio rD/AD. A direct physical explanation of this effect has
not been found; it should be noted that the neglect of the third-order
term was not an assumption based solely on physical grounds. ‘*athe-
matically, the third-order term is necessary for the existence of the
ion-diffusion layer (actually a boundary layer for n+). Indeed, the
approximation leaves only the Equation (5.1), and the positive ion
density must be found by applying Poisson's equation to the numerically
computed potential profile.

Figure 5.2 illustrates the resulting positive ion density distri-
bution for a representative situation, C = 140, rp/AD = 0.5. Also in
Figure 5.2, in great contrast, is the positive ion distribution calcu-
lated from (4.7) and (4.8) by the technique of Section 4.3.2, It plunges
to zero extremely rapidly in the ion-diffusion layer. While both posi-
tive ion density profiles in Figure 5.2 are nearly constant in the sheath
(2.0 < x < 11.5) the number density found by Su and Lam's approximation
is nearly two orders of magnitude too small. Therefore, it must be con-
cluded that the neglect of the third-order term in (4.3) seriously affects
the distribution of positive ions around the probe. On the other hand,
the solution of (4.7) and (4.8) in their exact form prohibits large
negative gradients of n+(i) in the quasi-neutral and transitional regions,

X < 2.0. It is important that the true ion distribution be known for any

extension of the theory of the stationary probe to moving probes.



n+—

10° ~ T T I I i
I /NO APPROXIMATIONS |
— 1 -
107 |- ’
1072 ]
I THIRD ORDER TERM DROPPED ]
|03 i | | 1 I |
0 2 4 6 8 10 14

Figure 5.2 Positive ion distributions from the numerical
integrations.
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5.2 Potential Profile and the Current-Voltage Curves

Figure 5.3 shows the potential distributions around the probe for
various values of C, calculated by numerical integration of (4.7) and
(4.8). Within the sheath it is seen that ¢(x) is nearly linear in x,
which implies that ¢(r) ~ r-l, and the disturbance of the probe extends
well into the plasma, at least ten probe radii for the ip values of in-
terest. Therefore, no saturation should be expected in the current-
voltage characteristic of the probe, although as Cohen (1963) stated, a
tendency toward saturation exists for very large probes (rp/AD > ®),
This nearly r-l dependence of ¢ should not, however, be taken as an in-
dication that the potential distribution is the same as that which would
exist in free space. In fact, the electric field in the ion-diffusion
layer and the sheath is significantly larger than the field which would
exist if space charge were negligible, typically 1.1 or 1.2 times as
large for the values of C indicated in Figure 5.3 and the values of ip
from (4.4) and (4.14). This can be seen by comparing the electric field,
E, from the numerical integrations, with the electric field, Eo’ which
would surround the probe if space charge could be neglected. Ignoring

the vector nature of the fields since both E and Eo have only a radial

component (which is negative), E = g% = %%—g§-= ikarp C%%)/erz, and
E = kTr V /erz. Therefore,
o PP
- : d_(b\)/ .
E/E, = %, (d).( % (5.2)

The quantity %%- was printed by the computer program (see Appendix B)

as a function of x, thus permitting a plot of the normalized electric

field, E/Eo, as a function of distance from the probe.
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In Figure 5.4, E/l:‘O is plotted versus the normalized distance, p,

from the center of the probe, where p = (r/AD) = (Cl/2

/2x). This plot
is for C = 100 and pp = (rp/AD) = 0.5. The probe potential corresponding
to this solution is ¢p = 79.22.

Several conclusions may be drawn from Figure 5.4. First, it is

apparent that the shielding effect of the positive-ion sheath causes the

field to be greater than EO for r < S.SAD, or for (r-rp) < SAD since

rp = O.SAD.

Farther from the probe, for r > 10A,, the ratio E/EO decreases very

D’
slowly with increasing distance. This implies that the field surrounding
the probe varies as r~2 at large distances from the probe, which just
states that the space-charge sheath is of finite extent. For the case
shown in Figure 5.4 the space charge is confined to the region r < IOAD.

Cohen (1963) pointed out that the ratio E/EO should approach a con-
stant when p becomes very large compared to unity, for highly negative
probes. Thus, the potential decays only as p_l as p > =« and the Debye
shielding in the space-charge sheath (see e.g. Jackson, 1963) is incom-
plete; the potential around a test particle, which collects no current,
decays as e_p/p.

Since the electric field around the probe penetrates far into the
plasma, one should not expect the positive-ion current to attain a sat-
uration value. This is in contrast to the behavior of the electron
current in Region A of Figure 2.1, the current-voltage characteristic of
a Langmuir probe.

The current-voltage characteristics of the probe will now be pre-

sented. In Section 3.3, ¢ was defined as -eV /kT , and x_as I /2I
p p - n + R

Fy
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(also see Section 4.6), where I_ is the random positive ion current to

R
the probe. Therefore a plot of ip versus ¢p may be considered a graph
of normalized current versus normalized probe voltage. Curves of x
versus ¢p with pp = (rp/xD) as a parameter are shown in Figure 5.5. It
should be noted, however, that ip is proportional to (NO)-I, from the
expression for IR in Section 3.3.

To display a current independent of the quiescent plasma number
density, the quantity (C/2ip) = (I+/IR)p§ is plotted as a solid line
versus ¢p in Figure 5.6, again with pp as a parameter. Since (I+IR)p;
is proportional to rpI+/u+, the number density of positive ions may be
found from Figure 5.6 in an experiment in which the gas temperature and
the positive-ion mobility are known. As expected, the curves of Figure
5.6 have no saturation region, although the curves for higher pp are
flatter.

The curves of Figure 5.6 are plotted again in Figure 5.7, but on
log-log paper. Again noting that the quantity (C/Zip), on the vertical
axis, is proportional to the positive ion current, I+, and that ¢p, on
the horizontal axis, is the normalized probe voltage, one may deduce the
functional dependence of I+ on the probe voltage. For ¢p > 25 the traces

are linear and therefore
I ~ ¢ (5.3)

where B is the slope of the trace. As noted in the discussion of Figure
5.6, the higher pp, the flatter the curves. In fact, for pp = 1.0,

B = 0.53, while for p_ = 0.4, B = 0.55, and for Py = 0.1, B = 0.62. The
I
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Figure 5.6 Current-voltage characteristics of the probe, I.
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Figure 5.7 Current-voltage characteristics of the probe, II.
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fact that B decreases with increasing pp confirms Cohen's (1963) obser-
vation, mentioned at the beginning of Section 5.2.

5.3 Comparisons to Simplified Theories

5.3.1 Zero Space .Charge Theory

To estimate the importance of including space charge in the theory
one may attempt to formulate a theory which neglects it. With no space
charge the potential profile in the plasma is the same as in free space,
that is,

V(r) = r V /r 5.4
( o'p 5.4
and
E=1rV /r2 (5.5)
Y
for r z_rp. For a highly negative probe one need only consider the pos-
itive-ion current. Assuming a steady state and no production or loss of
positive ions, Equation (3.3) implies that I+ = N+ev+4nr2, where v, is

the speed of a positive ion; we assume v, = u+E. Then by (5.5) we have

[ = 4nrpeN+u+Vp . (5.6)
Thus, a linear relation between the positive ion current and the probe
voltage is predicted in a zero space-charge theory. As was pointed out
at the end of Section 5.2, the true current-voltage curves obey a rela-
tion of the form of (5.3) with 8 < 1, and space charge may not be ne-
glected.

5.3.2 Collisionless Theory Including Space Charge

The classical Langmuir probe neglects collisions but considers the

effect of space charge. The case of a sheath thin compared to the probe
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radius (space charge-limited current) is not of interest in the present
study due to the inequality (4.14) and an expression derived by Su and
Lam (1963) for the ratio of sheath thickness to probe radius for highly
negative probes. For thick sheaths (orbital motion-limited current), the
positive ion current to a highly negative spherical probe is given by

+

4ﬂr2 times the right side of (2.4) with the ion parameters, N , m , and
p g p +

T+(=Te) instead of those of the electron (Boggess, 1959), that is,
_ 2 1/2
I, = 4nrpN+e(kT/2m+) (1+eVp/kT+) (5.7)

For highly negative probes, -(eVp/kT+) = ¢p >> 1 and (5.8) reduces to

I+ "~ ¢p, which is not the functional form of the curves of Figure 5.6.
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6. INTERPRETATION AND POSSIBLE EXTENSIONS

6.1 Conclusion

The differential equations governing positive ion collection by a
spherical probe in a collision-dominated plasma were developed in Chapter
3 and were solved exactly by a numerical technique outlined in Chapter 4
for the case of a highly negative probe. The results of the numerical
solution for probes of moderate size compared to the Debye length were
presented in Chapter 5. It was shown that the approximation introduced
by Su and Lam (1963) appreciably affects the current-voltage character-
istics of the probe and leads to a distribution of positive ions around
the probe which is very different from the distribution obtained by an
exact solution of the equations.

The positive-ion sheath was found to be uniform; the density of
positive ions in the sheath was nearly constant. This feature of the
space charge distribution permitted the exact solution of the equations
in a wider regime of operation of the probe than would have been possible
otherwise.

In Section 5.3 the results of the exact solution of the equations
were compared to those from simplified theories. It was found that the
neglect of space charge is not justified.

6.2 Limitations

Several physical assumptions place limitations on the validity of
the equations developed in Chapters 3 and 4. Beginning with Equations
(3.1) and (3.2) the assumption was made that the drift velocities of the
charged particles are proportional to the electric field, ﬁ, with the

appropriate mobility as the proportionality constant. For large electric
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fields this assumption breaks down (Sena, 1946). For example, with

0.6
N. ions in N2 gas the drift velocity is proportional to E when the

2
ratio of electric field strength to gas pressure is greater than
40 volts/cm/mmHg (McDaniel, 1964). Balmain (1966) stressed the need for
a study of ion collection which assumes a drift velocity proportional
to gB where 0.5 < 8 < 1.0, in accord with experimental data (McDaniel,
1964) . The complications which would arise in such a study are likely
to be prohibitive (Cohen, 1963). The applicability of mobility theory
throughout the D-region of the ionosphere is not universally accepted.
Hoult (1965) justified the use of a simple mobility relation (drift
velocity ~ E) up to 80 km for probe voltages of several volts.

The assumption of a steady state plasma could break down for probe
voltages greater than the ionization potentials of the neutral molecules
due to the ionization of the neutral gas by the accelerated ions. For
D-region temperatures, kT/e!-;JZ.lo-2 volts, so that ¢p = 500 corresponds
to a probe voltage of about 10 volts, high enough to ionize nitric oxide,
but less than the ionization potentials of molecular oxygen and molecular
nitrogen.

For D-region plasma probes the assumption that the gas is weakly
ionized presents no problem (see Section 1.2). A recent paper by Su
and Sonin (1967) extends the theory of operation of spherical electro-
static probes to moderately ionized dense gases, at least for the case
rp/>\D >> 1.

It should also be mentioned that the use of the Einstein relations

in (3.10) and (3.11) assumed no temperature gradients in the plasma.

Magnetic fields were also neglected.




6.3 Possible Extensions

6.3.1 Improvements to the Stationary Probe Theory

A useful extension of the theory of the stationary probe would be
the inclusion of two or more positive and negative ion species. It
would be especially desirable to allow for the simultaneous presence of
electrons and negative ions (see Section 1.2). In this case a third
term would be added to the right side of Poisson's equation, (3.5), and
an additional flux relation would be necessary. For highly negative
probes one would assume that both the electrons and negative ions would
be in thermal equilibrium with the repulsive potential of the probe, and
their distributions would take the form of (4.2). The condition that the
charged-particle gases have the neutral gas temperature would make the
problem tractable.

Experimental verification of the theoretical current-voltage curves,
Figure 5.6, is not possible in contemporary laboratory plasmas since the
fraction of ionization is too high. Also, the appreciable difference
between the neutral gas temperature and the charged-particle temperature
would alter the curves in Figure 5.6 although current-voltage curves can

be generated numerically for arbitrary values of the temperature ratio,

6.3.2 Possible Extensions to Moving Probes

When the probe is in motion with respect to the plasma the problem
of determining the ambient plasma density in terms of the collected
current becomes even more difficult. If the motion is supersonic a
detached shock will precede the (spherical) probe; outside the shock the

flow will be uniform, and inside the shock there will be a region of
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incompressible flow. Qualitatively, one can say that significant elec-
trical effects on the charged particles will be restricted to the sheath
surrounding the probe. For high probe potentials and a weakly ionized
gas the sheath may extend well beyond the shock. Quantitatively, the
problem would be very difficult. Also, any ionization caused by the
shock would vitiate the theory.

For a subsonic flow a precise mathematical formulation of the problem
should be feasible. With laminar flow everywhere around the probe there
would be an analytic solution for the flow lines, and in a weakly ionized
gas the ionization will not affect the flow of neutral gas. The veloc-
ities of the accelerated particles would just be the vector sum of the gas
flow velocity and the drift velocity in the electric field. The problem
would be two-dimensional with the radial distance and the flow aspect
angle the independent variables. Despite being considerably more com-
plicated than the case of a stationary probe, it is felt that solutions
can be found to provide a comparison with the results for the stationary

probe and an evaluation of the effects of the motion.
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APPENDIX A

Choice of the Starting Values for the Numerical Integration

The Poincaré-Lighthill-Kuo method (Tsien, 1956) was used to find
compatible starting values for X, ¢(x), and n_(X) in the numerical in-
tegration of Equations (4.7) and (4.8). In the PLK method the dependent
variables and the independent variables are expanded in power series of
a small parameter of the problem in terms of a parametric variable, in
the neighborhood of a singular point. By choosing an appropriate para-
meterization it is often possible to find an expansion uniformly valid
in the region of interest, or in some cases, it is possible to eliminate
the singularity altogether (Tsien, 1956).

Equations (4.7) and (4.8) are re-written here for convenience:

2
-4 d
'S4 = Cln, - exp(-0)1/4 (4.7)
dx
dn
* o0
& - & (4.8)
At x = 0 the quasi-neutral solution, n_=n_= e—¢, and the boundary
condition,
$(0) = 0 (A.1)

substituted into (4.8) imply that %% =1 at x = 0. However, x = 0 is a

singular point of (4.7). Therefore, a small, but non-zero value of X

had to be taken as the starting point for the integration, and a correc-

. . - - do . .
tion term to the expressions for n+(x), $(x), and a%-ln the quasi-neutral

gign was necessary.



The PLK method was applied as follows. The small parameter of the
problem, e, was identified as (4/C). Then X, ¢, and n, were expanded in

powers of e, as functions of the parametric variable n, that is,

x(n) = n + ex;(n) + eziz(n) + ... (A.2)
d(n) = do(n) + eo1(n) * €6,(n) + ... (A.3)
n,(n) =n,(n) *+en,(n) +en () * ... (A.4)

d¢

The derivative of the potential, FEl

, was not expanded since its starting
value was to be found by an iterative routine in the computer program
(see Appendix B).

Before carrying out the expansions (A.2), (A.3), and (A.4) it was
necessary to derive the converted boundary condition on ¢(n) at n = 0,

corresponding to ¢(x) = 0 at x = 0. This derivation is now presented.

At x = 0 (A.2) becomes
- 2-
0 =ng + exy(ng) + e xz2(ng) + ... (A.5)
where ng is the n-coordinate corresponding to x = 0. Solving (A.5) for

ng and then inserting the result into the arguments of x; and x, in (A.5)

yields

no= -eX (-e%; (ng) - €2XKp(ng) * +..) - £2%p(-eX)(ng) - £2Kp(ng) - ++.). (A.6)
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Dropping terms of the order of 62 in (A.6), and noticing that

X1 (~ex1(ng)) - X1(0) dil\
- = dn
—EX]_(T]()) } n=0

for ex;(ng) << 1, it is found from (A.6), to first order in e,

ng = - ex1(0) . (A.7)
Now at x = 0, or n = ng, (A.3) becomes

0 = ¢p(ng) + edy(ng) + ... (A.8)

where ngy is given by (A.7). Then by noticing that

$0(-€X1 (0) - 09 (0) d¢o\
7~/

=~ } . s (A.9)

-ex; (0)

again for ex;(0) << 1, the following relation is obtained after dropping

terms of order 52

0= ¢o(0) - ¢ [x % = eg¢y(0) . (A.10)

Equating coefficients of the el and ¢ terms yields

¢9(0) = 0 (A.11)



and

- d¢
= [=¥0
. n=0
Before proceeding to expand the variables according to (A.2), (A.3),
and (A.4) it is necessary to write down the expression for the operator,
d d dn d

- . i - = = = i operator, exact
= Since 1% X dr an approximate form of the ope »

through first order in e, is

a [} au]a
_F Sk ol (A.13)

which is obtained by solving (A.2) for n and forming g%u Also it should

be noticed that

exp(-¢) = exp(-¢g) exp(-e¢1) ...=zexp(-¢g) [1 - ed1] , (A.14)

and

4 _
£ =0+ 4en® () (A.15)

through first order in e¢.

By immediately dropping terms of order 52, Equation (4.7) becomes

- \/[.2 2
e(n4 + dend X1) (1 - € j—XI)RI - € g—xl) d—go + € d—%l
n n dn dn

2-
d
- e _.__jn’z‘l (__320 + e ——dil)—l = [n, o+ en, - exp(-¢0) (1 - e¢1)]  (A.10)
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Equation (4.8) becomes

e 9% (d“+o dny ) _ (7 L 9%\ (deo,  d¢
(1 € dn) oot € an 1 € ) \an + € an (n+0 + gn+1) -2 (A.17)

Equating coefficients of the €% terms on both sides of (A.16) leads

to

N, = exp(-¢0) . (A.18)
Similarly from (A.17) one obtains

exp(-¢g) %% =1 (A.19)

By employing the boundary condition, (A.1l1), one obtains

n =1 -n (A.20)
and

¢ = -In(l - n) (A.21)
as the solutions of (A.18) and (A.19).
Equating the coefficients of € on both sides of (A.16) and using

(A.21) leads to

WICEORIEE W CE IR (A.22)
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Similarly from (A.17) one derives

_d_x_l = _ dn;tl g dé,
2 In - n+1/(1 n) - I + (1-n) an (A.23)
Combining (A.22) and (A.23) one obtains
dxi _ 4, 3 d 4, 20 d¢)
2 & n'/(1-n) o [n/(1-n)7] - 2n an 2¢, (A.24)

Now the freedom in the choice of parameterization allows one to set
d
2n %1 + 67 =0 (A.25)

to simplify the differential equation, (A.24), for x;(n). Equation (A.25)

has the solution ¢; = Yn_l/z

, where Y is an arbitrary constant. Since
the potential is bounded, Y must be zero. Equation (A.24) can then be
integrated after a partial-fraction expansion. After applying the bound-

ary condition, (A.12), for x;(0) one obtains

- 2 4 2

x; = - [(n+7)(n-1) + 12 In(l-n) + 8/(1-n) - 1/(1-n)" + 2n /(1-n)"]/4 (A.26)
. 4 2 .

From (A.22) one obtains n,; = n /(1-n)" since ¢, = 0.

Summarizing, the expressions for x, n _, and ¢ through first order

in e are

R =n - [(#7)(n-1) + 12 In(l-n) + 8/(l-n) - 1/(1-n)°

+ 20t/ (1-mf1/c (A.27)




(1-n) + (4/0n%/(1-m)2 (A.28)

=3
n

R=s
I

-1n(1l-n) (A.29)

where (4/C) has been substituted back for «.

The expressions (A.27), (A.28), and (A.29) were used to find the
appropriate starting values for the numerical integration of (4.7) and
(4.8). For each numerical integration a value of the parameter, C, and
a value of the parametric variable, n, were given to the computer as in-
put data (see Appendix B). Typically, n was 0.3 or 0.4. The results of
the numerical integrations were checked for sensitivity to starting values
by changing the value of n by 0.1 or 0.2 and repeating the integration
(see Section 5.1).

Equation (5.1) was also solved by numerical integration (see Section

5.1). The starting values of x and ¢, as obtained by PLK technique, are

X =n+ [1/(1-n)% - 8/(1-n) - 12 In(1-n) + 8(1-n) - 1/(1-n)°1/C (A.30)
and

¢ = -1n(l-n) (A.31)

It should be noted that (A.30) disagrees with that obtained by Su and

Lam (1963). Equation (A.30) is correct, however, as was confirmed by

d¢

Su (1966). The starting value for I vas also obtained by the PLK

method when Equation (5.1) was solved. The expression used in the numer-
ical integrations was

d¢

2 3 3 N T e T U & Y
T = V/@-n) - 201 - 4/(1-n) + 6/(1-n)" - 4/(1-n)" + l/tl-n)4j/b (A.32)



APPENDIX B

The Computer Program

The numerical integrations were performed by the Illiac II computer
of the Department of Computer Science, University of Illinois. In the

computer program the physical variables took the following names:

X > X
n, - Y(1)
¢ > Y(2)
2, v
n > YFOUR

The numerical integration was executed by a Runge-Kutta-Gill routine
(Gill, 1951) which appears in the section of the program written in the
NICAP language. NICAP is the machine language of Illiac II.

Equations (4.7) and (4.8) appear between statement 100 and state-
ment 60 of the program. The correct starting value was found by the
iterative loop which begins at statement 49.

When Equation (5.1) was integrated the starting value for Y(3) was
found by the PLK method and the expression (A.31) from Appendix A was
used in place of the iterative loop.

The computer program follows.
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47023CICFRONE RALPH J C 003 003 0025 OO0OOEE

FORTRAN
PUNCH 0OBJECT
GO
DIMENSION Y(4)s DY(4)s STR(4)

800 RIT 74 RO1s ETAs Cs STRTHIs STRTLWs XPRNT

801 FORMAT (5F15,0)
WOoT 65 600s C

600 FORMAT(1H1//10X13H THE CASE C =4 F9e3s 1He//)
STARTX = 0,0

Z = 0.0

JAM = 0

JIG = O

THE STARTING VALUE FOR Y(3) 1S FOUND BY ITERATION
49 START = (STRTHI + STRTLW)/2.0

THE STARTING VALUE 15 CHECKED TO DETERMINE IF IT HAS BEEN
CALCULATED TO MACHINE ACCURACY
IF (STARTX — START) 500, 501, 5n0
500 WOT 6 4049 START
404 FORMAT(1HO//10X49H THE STARTING VALUE FOR Y(3) IN THIS SEQUENCE IS
1 » 1PE2Ne12s 1He/)
STARTX = START

THE STARTING VALUES FOR THE INTEGRATION ARE GIVEN BY THE PLK
CORRECTION TO THE QUASI-NEUTRAL SOLUTION
58 X = ETA ~((ETA+7eO0)R(ETA=1e0) +12e0%ELOG(1s0-ETA) +8¢0/(1e0-ETA)
1 =160/ (1e0=ETA)%%2) +(2s0%ETA%#4)/((1s0-ETA)Y%*%2))/C
Y(1) = 10 =ETA + {(4O%ETA%%4)/(CR{160-ETA)%%D)
Y{?) = =FLNOG(1.0-FTA}
Y{(3) = START
DELTAX = 0,401
YONE = Y(1)
YTHREE = Y(3)
50 YFOUR = EXP(=Y(2))
THE PRINTING IS CONTROLLED
1F{X=XPRNT) 79s 77s 77
TT JAZZ = (JAM=JIG*5)
JAM = JAM + 1
TF(JAZZ) 79s 78s 78
78 WOT 69 4039 (Y(I)sy 1 = 193)s YFOURs X
403 FORMAT(10X7H Y(1) =» 1PE1548s 11H Y(2) =+ 1PE1548s 11H Y(3
1) =9 1PE1548s 11H Y{4) =9 1PE15e8s 8H X =9 1PE12e5)
JIG = JIG + 1
79 IF(YONE - Y{1)) 80s R1s 81
THE ION DENSITY MUST BE MONOTONICALLY DECREASING, THE STARTING
VALUE FOR Y(3) IS TOO BIGe
RO STRTHI = START
GO TO 300
81 IF(Y(1)*Y(3)) 82y B2, 29
THE ION DENSITY AND Y(3) MUST BE POSITIVEs, THE STARTING VALUE FOR
Y(3) 1S TOO SMALL,
R2? STRTLW = START
GO TO 300
29 YONF = Y(1)
THE SOLUTION SIMPLIFIES WHEN Y(3) APPRQOACHES AN ASYMPTOTIC VALUE
THE INTEGRATION IS TERMINATED If THE AYMPTOTIC VALUE IS ATTAINED

IF((Y(3) = YTHREE) =0.0000001) 270, 270s 30
270 IF({X=2.0) 304 30y 70
70 IF(Z) 803, 71y 503
71 WOT 69 725 Y(3)
72 FORMAT{1HO/70X32H THE ASYMPTOTIC VALUE OF Y(3) IS s 1PE15e¢8s 1He//
1) :



Z = 1.0
XPRNT = 0,0
GO TO 55
30 YTHREE = Y{(3)
CALL SETRKD(4s Ys DYs STRs X DELTAX)
Y(4) = X
51 1 = RKDEQ(O)
GO Tn (100, 200V 1
100 X = Y{(4)
DY(1) = Y(1)*Y(3) —-2,0
DY{(2)y = Y(3)
IF(Y(2) =20.0) 60y 6Cy» 61
AN DY (3) CH(Y(1) =EXP(=Y(2)))1/(4,0%X¥%4)
DY (4 1
G0 Tn s1
51 DY(3) CAY(1)1/7(4,0%X%%4)
DY (4) 1
GO TO s1
200 X = Y(4)
IF(X-1000.0) 50y 50, 89
20N YFOUR = EXP(-Y(?))
WOT &s 403y (Y(I)s I = 193)s YFOURs X
GO TO 49
501 IF(Z) &N3, 502y 503
502 WOT Ks 4069 START
406 FORMAT(1HD/10X82H THE STARTING VALUE FOR Y(3) HAS BEEN DETERMINED
1TO MACHINE ACCURACYs THE VALUE ISy 1PE20e12s 1He//)
XPRNT = 060
Z = 140
YTHREE = 0,0
GO Tn &5
503 Gn Ton /800
END

it oo




$ NICAP

$ PUNCH OBJECT
ENTRY RKDFQsSETRKD
SETRKD SFR SeT
SFR 69T+
SFR T7eT+>
LFR 5 s COUNTS
ATN 391
LFR Fé
CAD M8
SIA Mg
CSM MINUSNIM8
SFR 6ePNINTR
SFR 69S+1
ATN 391
LFR F7
CAM 13+sSTEPSZ
CAM HeM13
SFR 5+ CNAUNTS
SFR £eS
LFR ST
LFR 69T+
LFR TeT+2
JLH M3
RKG? SFR 545
SFR 635+1
RKGA& LFR 49T
LFR e TH
LFR 69T +2
LFR TeT+3
CAD le
JLH M3+1
RKDFQ SFR 47
SFR SeT+1
SFR 69T+
SFR TeT+2
LFR TyTOGGLE
JNM 129RKD?
RKD1 LFR 545
LFR 69POINTR
LFR 2 oH
FLD
CAD KSTR
MPY F2

STR KSTPRs 1

CJF MINUSN

LFR 69541
RKG3 Cs8 TSTR

MPY CONSTSse1ls

ADD KSTR

MPY CONSTS

STR F?
ASC YSTRs Y
CAD F2
MPY EXS
STR FZ

csB KSTRs1s
ADN COUNT1,1
CAM TFST

MPY CONSTSs1s
JNM TESTsRKGA



RKG4

RKGS

RKD?

RLANK S
S

T
TOGGLE
POINTR
COUNTS
RKGC

STEPSZ
TEST
CONSTS
H
COUNT1
N
MINUSN
YSTR
KSTR
TSTR

MPY
ADD
ASC
cJz
ADM
TRA
LFR
cJU
LFR
SFR
LFR
SFR
CNM
SFR
CAD
LFR
LFR
LFR
LFR
JUH
LFR
SFR
LFR
FLD
ATN
SFR
CJIF
TRA
RSS
BSS
BSS
DFCAL
DECAL
DECAL
0cTA
0CcTn
0cTa
neTa
ncTaQ
DEC
EQUM
EQUM
EQUM
FOUM
EQUM
FQUIM
FQUM
FQUM
EQUM
GO

e

F2
TSTRe1
MINIJSNs RKGS
CONSTSy=2
RKG?2

6 9PNOINTR
COUNT ] s RKG?
8 s COUNTS
5eS
6+sPNINTR
AesS+1
T¢TNGGLF
e

LT

GeT+1
69T+
TeT+3
M3+
7sBLANKS
79 TNAGRGLE
AePNINTR

TSTRe1

F7

MINUSN

RKGA

1

2

4

-19909

XX

PY.GCsNoe=440
6000999194000 44
200099313453+16606+630096201
20004991

3324977 71911477511601940000991

6§252912525952572512577
«010
M3
M4
MS
M6
M7
MR
M9
M10
M11
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